Product Details
ISBN 10 : 4862852513
Content Description
本書は、バナッハ空間における微分法と凸解析を基礎に、最適性の必要条件の一般原理であるラグランジュの原理を定式化する。最初の六つの章と第10章は極値理論の基礎と最適性の必要条件を扱い、ことに10章では自然科学、工学、経済学、幾何学、解析学、近似理論に登場する異なる極値問題を統一的な手法で考察する。残りの章では、最適性の十分条件と解の存在、凸解析の展開を考察する。特に17世紀にベルヌーイが開発した変分法は物理学や力学などに貢献したが、第二次世界大戦直前から経済学や工学により提起された問題から、フォン・ノイマンやカントロビッチらにより数理経済学の基礎が作られ、ゲーム理論、数理計画法、ORなどが誕生し、さらに産業・技術活動を制御する最適制御理論へと展開した。今後、数理科学の主要な分析手法の基礎文献として必読書となろう。
目次 : 序論:背景にある題材/ 極小点の必要条件/ 変分法・最適制御の古典的問題における極小点の必要条件/ 凸解析の基礎/ 局所凸解析/ 局所凸問題と相制約付き最適制御問題の最大値原理/ 特別な問題/ 極小点の十分条件/ 可測多価写像と積分汎関数の凸解析/ 変分法と最適制御における問題の解の存在/ 理論の諸問題への応用/ 問題
【著者紹介】
細矢祐誉 : 1979年神奈川県生まれ。2002年慶應義塾大学経済学部卒業。2010年同大学大学院経済学研究科後期博士課程単位取得退学。2011年慶應義塾大学より博士(経済学)の学位を取得。2004年慶應義塾大学経済学部研究助手。2008年財団法人三菱経済研究所常勤研究員。2014年より関東学院大学経済学部専任講師
虞朝聞 : 1984年中国上海市生まれ。2007年慶應義塾大学経済学部卒業。2013年同大学大学院経済学研究科後期博士課程単位取得退学。2013年から16年まで慶應義塾大学経済学部助教。現在、慶應義塾大学大学院経済学研究科、横浜国立大学、横浜市立大学、神奈川大学で非常勤講師(本データはこの書籍が刊行された当時に掲載されていたものです)
Customer Reviews
Recommend Items
Feedback
Missing or incorrect information?
Product information of this page .
