Product Details
ISBN 10 : 4798183733
Content Description
「そう、すべては速さのために」
Pythonでデータセットを扱う際、最後に重要になってくるのはやはり「処理速度」です。データが巨大であればあるほど、ちょっとした工夫が処理速度を向上させ、「データの氾濫」ともいえる現状を打開する鍵になってくれます。
Pythonの特性を理解しつつそのパフォーマンスを最大限に引き出し、さらにハイパフォーマンスなライブラリを正しく利用することができれば、遅い遅いといわれがちなPythonにおいても、爆速な処理を手にすることができるのです。
本書は、組み込み機能やスレッディング特性、CPythonのグローバルインタプリタロック(GIL)などに始まり、Cythonへの移行やGPUの利用に至るまでの多面的なアプローチを紹介し、単にマシン性能を上げたり、マシンの数を増やすだけでは得られない、効率的なPythonアプリケーションの記述をサポートします。
【本書は『Fast Python: High performance techniques for large datasets』の邦訳書です。】
◆◆◆◆◆もくじ◆◆◆◆◆
●Part 1 基礎的なアプローチ
・Chapter 1 データ処理の効率化が急がれている
・Chapter 2 組み込み機能のパフォーマンスを最大限に引き出す
・Chapter 3 並行性、並列性、非同期処理
・Chapter 4 ハイパフォーマンスなNumPy
●Part 2 ハードウェア
・Chapter 5 Cythonを使って重要なコードを再実装する
・Chapter 6 メモリ階層、ストレージ、ネットワーク
●Part 3 現代のデータ処理のためのアプリケーションとライブラリ
・Chapter 7 ハイパフォーマンスなpandasとApache Arrow
・Chapter 8 ビッグデータの格納
●Part 4 高度なトピック
・Chapter 9 GPUコンピューティングを使ったデータ分析
・Chapter 10 Daskを使ったビッグデータの分析
・付録A 環境のセットアップ
・付録B Numbaを使って効率的な低レベルコードを生成する
【著者紹介】
チアゴ・ロドリゲス・アントン : 情報学の工学士号とバイオインフォマティクスの博士号を持つ。現在はバイオテクノロジー分野に従事している。科学計算とデータエンジニアリングのタスクを実行するためにPythonとそのすべてのライブラリを使っている。アルゴリズムの重要な部分を最適化するために、CやRustなどの低水準言語をよく使っている。現在はAmazon AWSベースのインフラで開発を行っているが、キャリアの大部分ではオンプレミスのコンピューティングクラウドと科学クラウドを使っていた。業界での活動に加えて、科学計算の研究では、ケンブリッジ大学とオックスフォード大学でデータ分析のポスドクを務めた経験がある。モンタナ大学では、リサーチサイエンティストとして生物学データを分析するための科学計算インフラ全体を一から開発した(本データはこの書籍が刊行された当時に掲載されていたものです)
Customer Reviews
Book Meter Reviews
Recommend Items
Feedback
Missing or incorrect information?
Product information of this page .

